Note

THE METHOD OF CALCULATION OF KINETIC PARAMETERS AS A POSSIBLE CAUSE OF APPARENT COMPENSATION EFFECTS

J.M. CRIADO and M. GONZALEZ

Departamento de Química Inorgánica de la Facultad de Química de la Universidad de Sevilla y Departamento de Investigaciones Físicas y Químicas, Centro Coordinado del C.S.I.C., Seville (Spain)

(Received 9 December 1980)

INTRODUCTION

The study of the significance of the compensation effect between the logarithm of the Arrhenius pre-exponential factor and the activation energy of heterogeneous reactions has received a great deal of attention [1-6]. Recent papers [7-11] have shown that very often the compensation effects reported in the literature are rather apparent and motivated by the influence of secondary effects on the reactions that leads to apparent kinetic parameters. The experimental errors, the effect of the particle size distribution and the heat and mass transfer phenomena have been considered as the major causes leading to the observation of an apparent compensation effect [12].

However, little, if any, attention has been paid to the study of whether the use of different methods of calculation for obtaining the kinetic parameters of one and the same reaction would be a possible source of apparent compensation effects. We think that this study merits attention after considering that compensation effects between the kinetic parameters obtained by different authors for the same reaction have been reported in several reviews [6,13]. Moreover, chemical interpretations of the phenomenon have been given in spite of the fact that the assumed reaction mechanism has not always been the same.

The scope of the present paper is to explore the influence of both the method of calculation and the kinetic law assumed for performing the analysis of single TG—DTG traces of $CdCO_3$, $MnCO_3$ and $PbCO_3$ on their kinetic parameters in order to determine if they are correlated through a compensation effect.

EXPERIMENTAL

 $CdCO_3$, $MnCO_3$ and $PbCO_3$, d'Hemio AR were used. The TG and DTG curves were obtained simultaneously under a vacuum of 10^{-4} torr using a

Fig. 1. TG and DTG curves of the thermal decomposition of $CdCO_3$.

Cahn electrobalance, model RG, equipped with a derivatograph Mark II. Sample weights of about 23 mg and a heating rate of 6° C min⁻¹ were used.

RESULTS AND DISCUSSION

The TG and DTG curves of the thermal decomposition of $CdCO_3$, $MnCO_3$ and $PbCO_3$ are included in Figs. 1, 2 and 3, respectively. Kinetic analysis of

Fig. 2. TG and DTG curves of the thermal decomposition of MnCO₃.

Fig. 3. TG and DTG curves of the thermal decomposition of PbCO₃.

the above data has been carried out by means of the Coats and Redfern [14] method

$$\ln g(\alpha) - 2 \ln T = \ln \frac{AR}{E\beta} \times \frac{E}{RT}$$
(1)

and that of Achar et al. [15]

$$\ln \frac{(d\alpha/dt)}{f(\alpha)} = \ln A - \frac{E}{RT}$$
(2)

where α is the reacted fraction at time t, β is the heating rate, E is the activation energy, A is the Arrhenius pre-exponential factor and $f(\alpha)$ and $g(\alpha)$ are mathematical functions depending on the reaction mechanism.

When the functions $f(\alpha)$ and $g(\alpha)$ fit the experimental data, plots of the left-hand side of eqns. (1) and (2) against the reciprocal of the absolute temperature give straight lines whose slopes and intercepts yield the apparent activation energy and the apparent Arrhenius pre-exponential factor, respctively.

The results obtained from kinetic analysis of the data included in Figs. 1– 3, by taking into account the $f(\alpha)$ and $g(\alpha)$ functions corresponding to the mechanisms more commonly used in the literature for describing the thermal decomposition of solids, are included in Tables 1–3. We can see that the experimental data fit most of the kinetic equations tested.

TABLE 1

Mechanism	Integral r	nethod		Differential method			
	<i>E</i> (kcal mole ⁻¹)	$A(\min^{-1})$	Regression coefficients	E(kcal mole ⁻¹)	$A(\min^{-1})$	Regression coefficients	
R1	25.2	2.7×10^{7}	-0.99678	9.5	1.2×10^{2}	-0.89177	
R ₂	31.9	7.0×10^{9}	-0.99957	26.8	1.3×10^{8}	-0.99951	
Ra	34.4	5.6×10^{10}	-0.99974	32.6	1.3×10^{10}	-0.99885	
$F_1(\alpha)$	39.8	5.1×10^{12}	-0.99912	44.2	1.3×10^{14}	-0.99493	
A_2	37.3	4.3×10^{10}	-0.99902	45.9	2.9×10^{13}	-0.98694	
A_3	34.7	1.8×10^{8}	-0.99888	47.6	4.1×10^{12}	-0.97631	
D_1	53.0	6.2×10^{16}	-0.99712	37.3	2.8×10^{11}	-0.98427	
D_2	61.1	2.4×10^{19}	-0.99902	52.0	1.7×10^{16}	-0.99779	
$\overline{D_3}$	71.3	2.2×10^{22}	-0.99976	69.6	4.7×10^{21}	-0.99964	
D_4	64.5	8.4×10^{19}	-0.99946	58.0	1.1×10^{18}	-0.99942	

Kinetic parameters obtained from analysis of the curves in Fig. 1 by different methods of calculation and different kinetic laws

Figures 4–6 show that plots of the logarithms of Arrhenius pre-exponential factor vs. the corresponding values of the activation energy lead to compensation effects represented by the equations quoted in Table 4.

The above results show that the differences in the kinetic parameters reported for a reaction would be motivated by both the method of calculation used and/or the kinetic law previously assumed. Moreover, in such a case $\ln A$ and E seem to be connected through a compensation effect.

TABLE 2

Mechanism Integral method Differential method $A(\min^{-1})$ $A(\min^{-1})$ E(kcal Regression Regression $E(\mathbf{kcal})$ mole⁻¹) $mole^{-1}$) coefficients coefficients 2.0×10^{5} 2.8×10^{1} R_1 19.7 -0.99420 7.8 -0.85459 7.0×10^{6} 1.1 X 10⁵ R_2 23.9 -0.99758 18.3 -0.99258-0.99751 R_3 25.5 2.6×10^{7} -0.99813 21.7 1.8×10^{6} 4.7×10^{8} $F_1(\alpha)$ 28.8 4.1×10^{8} 28.7 -0.99887-0.9984726.2 2.3×10^{6} 3.5×10^{6} -0.9981625.9 -0.99777 A_2 6.1×10^{3} 23.6 1.6×10^{4} A_3 -0.99774 23.2-0.99452 4.7×10^{12} 6.1×10^{8} $\mathbf{D}_{\mathbf{I}}$ 42.1-0.9949530.2 -0.97663 4.3×10^{11} D_2 47.3 1.7×10^{14} -0.99699 39.3 -0.99247 6.5×10^{15} 4.4×10^{14} 53.6 -0.99832-0.99835 D_3 49.9 2.1×10^{14} 3.9×10^{12} -0.99558 49.4 -0.99759 D_4 42.9

Kinetic parameters obtained from analysis of the curves in Fig. 2 by different methods of calculation and different kinetic laws

TABLE 3

Kinetic	parameters	obtained	from a	analysis	of the	curves	in 1	Fig. 3	3 by	different	method	is of
calculati	on and diff	erent kine	etic lav	vs								

Mechanism	Integral r	nethod		Differential method			
	<i>E</i> (kcal mole ⁻¹)	$A(\min^{-1})$	Regression coefficients	E(kcal mole ⁻¹)	$A(\min^{-1})$	Regression coefficients	
R ₁	33.5	8.0×10^{12}	-0.98458	-9.6	2.0×10^{-5}	-0.83812	
\mathbf{R}_2	41.3	1.8×10^{16}	-0.99029	10.1	3.2×10^3	-0.92843	
R_3	44.2	3.1×10^{17}	-0.99166	16.6	1.7×10^{6}	-0.97651	
$F_1(\alpha)$	50.4	1.4×10^{20}	-0.99372	29.7	5.0×10^{11}	-0.99155	
A ₂	48.3	$2.3 imes 10^{18}$	-0.99314	6.9	$3.2 imes 10^1$	-0.87509	
A ₃	46.2	2.1×10^{16}	-0.99249	-15.9	1.2×10^{-9}	-0.94398	
D_1	69.1	2.8×10^{27}	-0.98551	26.0	6.8 × 10 ⁹	-0.91167	
$\overline{D_2}$	78.7	1.6×10^{31}	-0.98898	42.9	4.0×10^{16}	-0.97126	
$\overline{D_3}$	90.5	3.5×10^{35}	-0.99205	62.9	1.9×10^{24}	-0.98922	
\mathbf{D}_{4}	82.6	1.6×10^{32}	-0.99018	49.8	1.4×10^{19}	-0.98057	

Fig. 4. Compensation effect between the kinetic parameters quoted in Table 1 for the thermal decomposition of $CdCO_3$. \circ , Differential method; \odot , integral method.

Fig. 5. Compensation effect between the kinetic parameters quoted in Table 2 for the thermal decomposition of $MnCO_3$. \circ , Differential method; \bullet , integral method.

Fig. 6. Compensation effect between the kinetic parameters quoted in Table 3 for the thermal decomposition of PbCO₃. $^{\circ}$, Differential method; $^{\bullet}$, integral method.

TABLE 4				
Mathematical	expressions	of the	compensation	effect

Sample	Equation	
CdCO ₃ MnCO ₃ PbCO ₃	$\ln A = 0.75E - 2.30$ $\ln A = 0.76E - 3.81$ $\ln A = 0.92E - 1.56$	

REFERENCES

- 1 V.M. Gorbachev, J. Therm. Anal., 8 (1975) 585.
- 2 J.M. Criado, J. Dominguez, F. Gonzalez, G. Munuera and J.M. Trillo, Proc. 4th Int. Congr. Catal., Moscow, 1968, p. 504.
- 3 D. Dollimore and T.J. Taylor, Thermochim. Acta, 40 (1980) 297.
- 4 D. Dollimore and P.F. Rodgers, Thermochim. Acta, 30 (1979) 273.
- 5 G.G.T. Guarini and R. Spinici, in H. Chiara (Ed.), Proc. 5th Int. Conf. Therm. Anal., Kagaku Gijutsu-Sha, Tokyo, 1977.
- 6 A.K. Galwey, Adv. Catal., 26 (1977) 247.
- 7 P.D. Garn, J. Therm. Anal., 7 (1975) 475.

- 8 A.K. Lahiri, Thermochim. Acta, 40 (1980) 289.
- 9 V.M. Gorbachev, J. Therm. Anal., 9 (1976) 121.

.

- 10 P.K. Gallagher and D.W. Johnson, Thermochim. Acta, 14 (1976) 255.
- E.P. Manche and B. Carroll, Thermochim. Acta, 31 (1979) 387.
 V.A. Logvinenko, B.I. Peshchevitsky and O.V. Gegola, J. Therm. Anal., 18 (1980) 463.
- 13 P. Mars, J.J.F. Scholten and P. Zwietering, Adv. Catal., 14 (1963) 35.
- 14 A.W. Coats and J.P. Redfern, Nature (London), 208 (1964) 68.
- 15 B.N. Achar, G.W. Brindley and J.H. Sharp, Proc. Int. Clay Conf., Jerusalem, 1 (1966) 67.
- 16 J.H. Sharp, G.W. Brindley and N.N. Achar, J. Am. Ceram. Soc., 47 (1966) 379.